Form C: Type Test Verification Report Type Approval and Manufacturer declaration of compliance with the requirements of G98. This form should be used when making a Type Test submission to the Energy Networks Association (ENA). If the **Micro-generator** is **Fully Type Tested** and already registered with the ENA **Type Test Verification Report** Register, the **Installation Document** should include the **Manufacturer**'s Reference Number (the Product ID), and this form does not need to be submitted. Where the **Micro-generator** is not registered with the ENA **Type Test Verification Report** Register this form needs to be completed and provided to the **DNO**, to confirm that the **Micro-generator** has been tested to satisfy the requirements of this EREC G98. | Manufacturer's reference number | | | MIN 3600T | MIN 3600TL-X. | | | | |---------------------------------|----------------------------------|--------------|--|---|-------------------|--|--| | Micro-gene | Micro-generator technology | | MIN 2500T | MIN 2500TL-X, MIN 3000TL-X, MIN 3600TL-X. | | | | | Manufactur | er name | | Shenzhen | Shenzhen Growatt New Energy Co., Ltd. | | | | | Address | Address | | | 4-13th Floor, Building A, Sino-German Europe Industrial Demonstration Park, No. 1, Hangcheng Avenue, Bao'an District, Shenzhen, Guangdong, China. | | | | | Tel | +86 755 295 | 51 5888 | | Fax | +86 755 2747 2131 | | | | E-mail | peng.zhu@ | growatt.com | | Web site | www.ginverter.com | | | | | | Connection (| Option | | | | | | Registered use separate | e sheet if | 2.5-3.6 | kW single phase, single, split or three phase system | | | | | | | more than one connection option. | | kW three phase | | | | | | | NA NA | | | kW two phases in three phase system | | | | | | NA | | | ases split phase | system | | | | 1 | | | | | | | | **Manufacturer Type Test** declaration. - I certify that all products supplied by the company with the above **Type Tested** reference number will be manufactured and tested to ensure that they perform as stated in this document, prior to shipment to site and that no site modifications are required to ensure that the product meets all the requirements of EREC G98. | Signed | | On behalf of | Shenzhen Growatt New Energy Co., Ltd. | |--------|----------|--------------|---------------------------------------| | | Jeng Ihu | | | Note that testing can be done by the **Manufacturer** of an individual component or by an external test house. Where parts of the testing are carried out by persons or organisations other than the **Manufacturer** then that person or organisation shall keep copies of all test records and results supplied to them to verify that the testing has been carried out by people with sufficient technical competency to carry out the tests. **1.Operating Range:** This test should be carried out as specified in A.1.2.10. **Active Power** shall be recorded every second. The tests will verify that the **Micro-generator** can operate within the required ranges for the specified period of time. The Interface Protection shall be disabled during the tests. In case of a PV Micro-generator the PV primary source may be replaced by a DC source. In case of a full converter **Micro-generator** (eg wind) the primary source and the prime mover **Inverter**/rectifier may be replaced by a **DC** source. In case of a DFIG **Micro-generator** the mechanical drive system may be replaced by a test bench motor. #### Test 6 RoCoF withstand Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs-1 as measured over a period of 500 ms. Note that this is not expected to be demonstrated on site. **2.Power Quality – Harmonics:** These tests should be carried out as specified in BS EN 61000-3-2. The chosen test should be undertaken with a fixed source of energy at two power levels a) between 45 and 55% and b) at 100% of Registered Capacity. The test requirements are specified in Annex A1 A.1.3.1 (Inverter connected) or Annex A2 A.2.3.1 (Synchronous). #### Micro-generator tested to BS EN 61000-3-2 | Micro-g | Micro-generator rating per phase (rpp) | | 3.6 kW | | | | |----------|--|--|------------------------------|--|---|--| | Harmonic | armonic At 45-55% of Registered Capacity | | | Registered pacity | | | | | Measured
Value MV in
Amps | Norma
lised
Value
(NV) in
Amps | Measured
Value MV
Amps | Normali
sed
Value
(NV) in
Amps | Limit in
BS EN
61000-
3-2 in
Amps | Higher limit for odd
harmonics 21 and above | | 2 | 0.0008 | 0.0008 | 0.0008 | 0.0008 | 1.080 | | | 3 | 0.0602 | 0.0615 | 0.0602 | 0.0615 | 2.300 | | | 4 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.430 | | | 5 | 0.2140 | 0.2188 | 0.0217 | 0.0222 | 1.140 | | | 6 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.300 | | | 7 | 0.3180 | 0.3251 | 0.0150 | 0.0153 | 0.770 | | | 8 | 0.0006 | 0.0006 | 0.0006 | 0.0006 | 0.230 | | | 9 | 0.0092 | 0.0095 | 0.0092 | 0.0095 | 0.400 | | | 10 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.184 | | | 11 | 0.0068 | 0.0070 | 0.0068 | 0.0070 | 0.330 | | | | 1 | 1 | 1 | 1 | 1 | | |----|--------|--------|--------|--------|-------|-------| | 12 | 0.0020 | 0.0020 | 0.0020 | 0.0020 | 0.153 | | | 13 | 0.0125 | 0.0127 | 0.0125 | 0.0127 | 0.210 | | | 14 | 0.0014 | 0.0015 | 0.0014 | 0.0015 | 0.131 | | | 15 | 0.0105 | 0.0107 | 0.0105 | 0.0107 | 0.150 | | | 16 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.115 | | | 17 | 0.0106 | 0.0108 | 0.0106 | 0.0108 | 0.132 | | | 18 | 0.0013 | 0.0014 | 0.0013 | 0.0014 | 0.102 | | | 19 | 0.0077 | 0.0079 | 0.0077 | 0.0079 | 0.118 | | | 20 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.092 | | | 21 | 0.0061 | 0.0063 | 0.0061 | 0.0063 | 0.107 | 0.160 | | 22 | 0.0024 | 0.0024 | 0.0024 | 0.0024 | 0.084 | | | 23 | 0.0037 | 0.0037 | 0.0037 | 0.0037 | 0.098 | 0.147 | | 24 | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.077 | | | 25 | 0.0038 | 0.0038 | 0.0038 | 0.0038 | 0.090 | 0.135 | | 26 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.071 | | | 27 | 0.0022 | 0.0022 | 0.0022 | 0.0022 | 0.083 | 0.124 | | 28 | 0.0005 | 0.0005 | 0.0005 | 0.0005 | 0.066 | | | 29 | 0.0017 | 0.0017 | 0.0017 | 0.0017 | 0.078 | 0.117 | | 30 | 0.0007 | 0.0007 | 0.0007 | 0.0007 | 0.061 | | | 31 | 0.0033 | 0.0034 | 0.0033 | 0.0034 | 0.073 | 0.109 | | 32 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.058 | | | 33 | 0.0045 | 0.0046 | 0.0045 | 0.0046 | 0.068 | 0.102 | | 34 | 0.0003 | 0.0003 | 0.0003 | 0.0003 | 0.054 | | | 35 | 0.0009 | 0.0010 | 0.0009 | 0.0010 | 0.064 | 0.096 | | 36 | 0.0015 | 0.0015 | 0.0015 | 0.0015 | 0.051 | | | 37 | 0.0053 | 0.0054 | 0.0053 | 0.0054 | 0.061 | 0.091 | | 38 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.048 | | | | 1 | i | | | | | | 39 | 0.0011 | 0.0012 | 0.0011 | 0.0012 | 0.058 | 0.087 | |----|--------|--------|--------|--------|-------|-------| | 40 | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.046 | | Note the higher limits for odd harmonics 21 and above are only allowable under certain conditions, if these higher limits are utilised please state the exemption used as detailed in part 6.2.3.4 of BS EN 61000-3-2 in the box below. **3.Power Quality – Voltage fluctuations and Flicker**: These tests should be undertaken in accordance with EREC G98 Annex A1 A.1.3.3 (Inverter connected) or Annex A2 A.2.3.3 (Synchronous). | | Starting | | | | Stopping Running | | | ng | | | | |---|----------|---------------|------|---|------------------|------|------|----|-----------------|---|-------------------------| | | d max | d c | d(t) | | d max | d c | d(t) | | P _{st} | | P _{lt} 2 hours | | Measured
Values at
test
impedance | 1.06 | 0.05 | 0 | | 1.15 | 0.23 | 0 | | 0.25 | | 0.26 | | Normalised to standard impedance | 1.06 | 0.05 | 0 | | 1.15 | 0.23 | 0 | | 0.25 | | 0.26 | | Normalised
to required
maximum
impedance | - | - | - | | - | - | - | | - | | - | | Limits set
under BS
EN 61000-
3-11 | 4% | 3.3% | 3.3% | | 4% | 3.3% | 3.3% | | 1.0 | | 0.65 | | | | | | | | | | | | | | | Test
Impedance | R | 0.4 | | Ω | | X | | 0. | 25 | Ω | | | Standard
Impedance | R | 0.24*
0.4^ | | Ω | | Х | | | 15*
25^ | Ω | | | Maximum
Impedance | R | - | | Ω | | X | | - | | Ω | | Applies to three phase and split single phase Micro-generators. For voltage change and flicker measurements the following formula is to be used to convert the [^] Applies to single phase **Micro-generators** and **Micro-generators** using two phases on a three phase system. measured values to the normalised values where the power factor of the generation output is 0.98 or above. Normalised value = Measured value*reference source resistance/measured source resistance at test point. Single phase units reference source resistance is 0.4 Ω Two phase units in a three phase system reference source resistance is $0.4~\Omega$. Two phase units in a split phase system reference source resistance is $0.24~\Omega$. Three phase units reference source resistance is 0.24Ω . Where the power factor of the output is under 0.98 then the X to R ratio of the test impedance should be close to that of the Standard Impedance. The stopping test should be a trip from full load operation. The duration of these tests need to conform to the particular requirements set out in the testing notes for the technology under test. Dates and location of the test need to be noted below. | Test start date | 28,Apr,2022 | Test end date | 29,Apr,2022 | |-----------------|------------------------|---------------|-------------| | Test location | Growatt Global Certifi | cation Lab | | # 4. Power quality – DC injection: This test should be carried out in accordance with A 1.3.4 as applicable. The % DC injection ("as % of rated AC current" below) is calculated as follows: % DC injection = Recorded DC value in Amps / base current where the base current is the Registered Capacity (W) / 230 V. The % DC injection should not be greater than 0.25%. | Test power level(3.6k) | 20% | 50% | 75% | 100% | |-----------------------------|--------|---------|--------|--------| | Recorded value in Amps | 17.3mA | 18.5mA | 18.8mA | 18.9mA | | as % of rated
AC current | 0.11% | 0.11% | 0.12% | 0.12% | | Limit | 0.25% | 0.25% | 0.25% | 0.25% | | Test power level(3k) | 20% | 50% | 75% | 100% | | Recorded value in Amps | 24.2mA | 25.3 mA | 25.9mA | 25.4mA | | as % of rated
AC current | 0.18% | 0.19% | 0.19% | 0.19% | | Limit | 0.25% | 0.25% | 0.25% | 0.25% | | Test power level(2.5k) | 20% | 50% | 75% | 100% | | Recorded value in Amps | 17.8mA | 18.5 mA | 18.7 mA | 18.9mA | |-----------------------------|--------|---------|---------|--------| | as % of rated
AC current | 0.16% | 0.17% | 0.17% | 0.17% | | Limit | 0.25% | 0.25% | 0.25% | 0.25% | **5.Power Quality – Power factor**: This test shall be carried out in accordance with EN 50548 Annex D.3.4.1 but with nominal voltage -6% and +10%. Voltage to be maintained within $\pm 1.5\%$ of the stated level during the test. | | 216.2 V | 230 V | 253 V | |-----------------------------|---------|---------|---------| | 20% of Registered Capacity | 0.96023 | 0.96136 | 0.95483 | | 50% of Registered Capacity | 0.99141 | 0.99141 | 0.98991 | | 75% of Registered Capacity | 0.99435 | 0.99452 | 0.99349 | | 100% of Registered Capacity | 0.99529 | 0.99668 | 0.99588 | | Limit | >0.95 | >0.95 | >0.95 | **6.Protection – Frequency tests:** These tests should be carried out in accordance with EN 50438 Annex D.2.4 and the notes in EREC G98 Annex A1 A.1.2.3 (**Inverter** connected) or Annex A2 A.2.2.3 (Synchronous) | Function | Setting | | Trip test | | "No trip tests" | | |-----------|-----------|---------------|-----------|---------------|--------------------|-----------------| | | Frequency | Time
delay | Frequency | Time
delay | Frequency /time | Confirm no trip | | U/F stage | 47.5 Hz | 20 s | 47.51Hz | 19.97s | 47.7 Hz
30 s | No trip | | U/F stage | 47 Hz | 0.5 s | 46.99Hz | 0.508s | 47.2 Hz
19.5 s | No trip | | | | | | | 46.8 Hz
0.45 s | No trip | | O/F stage | 52 Hz | 0.5 s | 52.02Hz | 0.505s | 51.8 Hz
120.0 s | No trip | | | | | | | 52.2 Hz
0.45 s | No trip | Note. For frequency trip tests the frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No trip tests" need to be carried out at the setting \pm 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error. **7.Protection – Voltage tests:** These tests should be carried out in accordance with EN 50438 Annex D.2.3 and the notes in EREC G98 Annex A1 A.1.2.2 (**Inverter** connected) or Annex A2 A.2.2.2 (Synchronous) | Function | Setting | | Trip test | | "No trip tests" | | |-------------|---------|---------------|-----------|---------------|-------------------|-----------------| | | Voltage | Time
delay | Voltage | Time
delay | Voltage /time | Confirm no trip | | U/V | 184 V | 2.5 s | 183.4V | 2.488s | 188 V
5.0 s | No trip | | | | | | | 180 V
2.45 s | No trip | | O/V stage 1 | 262.2 V | 1.0 s | 262.0V | 1.014s | 258.2 V
5.0 s | No trip | | O/V stage 2 | 273.7 V | 0.5 s | 273.1V | 0.482 | 269.7 V
0.95 s | No trip | | | | | | | 277.7 V
0.45 s | No trip | Note for Voltage tests the Voltage required to trip is the setting ± 3.45 V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error. **8.Protection – Loss of Mains test:** For PV Inverters shall be tested in accordance with BS EN 62116. Other Inverters should be tested in accordance with EN 50438 Annex D.2.5 at 10%, 55% and 100% of rated power. To be carried out at three output power levels with a tolerance of plus or minus 5% in Test Power levels. | Test Power | 10% | 55% | 100% | 10% | 55% | 100% | |--|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | Balancing load
on islanded
network | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Limit is 0.5 s | 0.253S | 0.284S | 0.325S | 0.248S | 0.295S | 0.334\$ | For Multi phase **Micro-generators** confirm that the device shuts down correctly after the removal of a single fuse as well as operation of all phases. | Test Power | 10% | 55% | 100% | 10% | 55% | 100% | |--|----------------------------------|----------------------------------|----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------| | Balancing load
on islanded
network | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 95% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Ph1 fuse removed | - | - | - | - | - | - | | Test Power | 10% | | 55% | 100% | 6 | 10% | 6 | | 55% | 100% | |--|--------------------------------|--------|----------------------------------|------------------------|-----------|-----------------|----------------------------|-----------------|-----------------------------------|-----------------------------------| | Balancing load
on islanded
network | 95% of
Register
Capacity | | 95% of
Registered
Capacity | 95% (
Regis | stered | Reg | % of
gistered
pacity | ı | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Ph2 fuse removed | - | | - | - | | - | | | - | - | | Test Power | 10% | | 55% | 100% | 6 | 10% | 6 | | 55% | 100% | | Balancing load
on islanded
network | 95% of
Register
Capacity | | 95% of
Registered
Capacity | 95% o
Regis
Capa | stered | Reg | % of
gistered
pacity | ı | 105% of
Registered
Capacity | 105% of
Registered
Capacity | | Trip time. Ph3 fuse removed | - | | - | - | | - | | | - | - | | Note for technolous establishing that to 1.0 s for these technology. | he trip od | curre | | | | | | | | | | Indicate additional | shut dov | vn tim | e included in | above r | esults. | | | | 40 ms | | | For Inverters test table. | ed to BS | EN 6 | 32116 the foll | lowing s | sub set o | of tes | sts sho | uld | be recorded in | the following | | Test Power and | 33% | | 66% | 100% | 6 | 33% | 6 | | 66% | 100% | | imbalance | -5% Q | | -5% Q | -5% | Р | +5% | % Q | | +5% Q | +5% P | | | Test 22 | | Test 12 | Test | 5 | Tes | st 31 | | Test 21 | Test 10 | | Trip time. Limit is 0.5 s | 0.140s | | 0.165s | 0.21 | 1s 0.127s | | | 0.139s | 0.118s | | | 9.Protection - F accordance with E | | | | | | | | | | | | | | Start | t Frequency | Chang | е | Confirm no trip | | | | | | Positive Vector Sh | nift | 49.0 | Hz | +50 de | egrees | | No trip |
lo trip | | | | Negative Vector S | hift | 50.0 | Hz | - 50 de | egrees | | No trip | p | | | | 10.Protection – 11.3, test procedu | | | | | | | | | | | | Ramp range | | Test | frequency ra | mp: | Test D | uratio | on C | Confirm no trip | | | | 49.0 Hz to 51.0 Hz | <u>z</u> | +0.9 | 5 Hzs ⁻¹ | | 2.1 s | | N | No trip | | | | 51.0 Hz to 49.0 Hz | Z | -0.95 | 5 Hzs ⁻¹ | | 2.1 s | | N | lo tr | -ip | | | | | | | | | | | | | | 11.Limited Frequency Sensitive Mode - Overfrequency test: This test should be carried out in accordance with EN 50438 Annex D.3.3 Power response to over- frequency. The test should be carried out using the specific threshold frequency of 50.4 Hz and **Droop** of 10%. | Test sequence at Registered Capacity >80% | Measured Active Power Output | Frequency | Primary Power Source | Active
Power
Gradient | |--|------------------------------|-----------|----------------------|-----------------------------| | Step a) 50.00 Hz ±0.01 Hz | 3617.25W | 50.00Hz | 3681.68W | - | | Step b) 50.45 Hz ±0.05 Hz | 3578.35W | 50.47Hz | | - | | Step c) 50.70 Hz ±0.10 Hz | 3401.85W | 50.69Hz | | - | | Step d) 51.15 Hz ±0.05 Hz | 3089.88W | 51.14Hz | | - | | Step e) 50.70 Hz ±0.10 Hz | 3403.45W | 50.72Hz | | - | | Step f) 50.45 Hz ±0.05 Hz | 3579.52W | 50.45Hz | | - | | Step g) 50.00 Hz ±0.01 Hz | 3610.37W | 50.01Hz | | | | Test sequence at Registered Capacity 40% - 60% | Measured Active Power Output | Frequency | Primary Power Source | Active
Power
Gradient | | Step a) 50.00 Hz ±0.01 Hz | 1822.31W | 50.01Hz | 1865.94W | - | | Step b) 50.45 Hz ±0.05 Hz | 1784.45W | 50.44Hz | | - | | Step c) 50.70 Hz ±0.10 Hz | 1600.42W | 50.71Hz | | - | | Step d) 51.15 Hz ±0.05 Hz | 1268.33W | 51.16Hz | | - | | Step e) 50.70 Hz ±0.10 Hz | 1605.21W | 50.68Hz | | - | | Step f) 50.45 Hz ±0.05 Hz | 1783.88W | 50.46Hz | | - | | Step g) 50.00 Hz ±0.01 Hz | 1818.42W | 50.00Hz | | | Steps as defined in EN 50438 **12.Power output with falling frequency test:** This test should be carried out in accordance with EN 50438 Annex D.3.2 active power feed-in at under-frequency. | Test sequence | Measured Active
Power Output | Frequency | Primary power source | |---|---------------------------------|-----------|----------------------| | Test a) 50 Hz ± 0.01 Hz | 3621.18W | 50.01Hz | 3706.75W | | Test b) Point between 49.5 Hz and 49.6 Hz | 3613.32W | 49.54Hz | 3690.41W | | Test c) Point between 47.5 Hz and 47.6 Hz | 3592.81W | 47.55Hz | 3697.59W | |---|----------|---------|----------| |---|----------|---------|----------| NOTE: The operating point in Test (b) and (c) shall be maintained for at least 5 minutes #### 13.Re-connection timer. Test should prove that the reconnection sequence starts after a minimum delay of 20 s for restoration of voltage and frequency to within the stage 1 settings of Table 2. Both the time delay setting and the measured delay should be provided in this form; both should be greater than 20 s to pass. Confirmation should be provided that the Micro-generating Plant does not reconnect at the voltage and frequency settings below; a statement of "no reconnection" can be made. | Time
delay
setting | Measured
delay | | Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 2. | | | | | | |---|-------------------|-----|---|-----|-----|--|--|--| | 20 | 30S | | At 266.2 V At 180.0 V At 47.4 Hz At 52.1 Hz | | | | | | | Confirmation that the Microgenerator does not re-connect. | | Yes | Yes | Yes | Yes | | | | **14.Fault level contribution**: These tests shall be carried out in accordance with EREC G98 Annex A1 A.1.3.5 (**Inverter** connected) and Annex A2 A.2.3.4 (Synchronous). | For machines with electro-magne | For Inverter output | | | | | |--|----------------------------|-------|------------------|-------|------------| | Parameter | Symbol | Value | Time after fault | Volts | Amps | | Peak Short Circuit current | ĺρ | - | 20 ms | 80.8V | 28.4A | | Initial Value of aperiodic current | Α | - | 100 ms | 76.5V | 21.8A | | Initial symmetrical short-circuit current* | I _k | - | 250 ms | 75.8V | 15.3A | | Decaying (aperiodic)
component of short circuit
current* | İDC | - | 500 ms | 72.4V | 7.7A | | Reactance/Resistance Ratio of source* | X/ _R | - | Time to trip | 0.212 | In seconds | For rotating machines and linear piston machines the test should produce a 0 s - 2 s plot of the short circuit current as seen at the **Micro-generator** terminals. * Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot | 15.Logic Interface. | Yes | |---------------------|-----| |---------------------|-----| This equipment is equipped with RJ45 terminal for logic interface that being received the signal from the DNO, the connection should be installed per installation manual, and the signal should be a simple binary output that captured by RJ45 terminal(PIN 5 and 1 for detecting the signal). Once the signal actived, the inverter will reduce its active power to zero within 5s. | power to zero within 5s. | | |---|-----------| | 16.Self-Monitoring solid state switching: No specified test requirements. Refer to EREC G98 Annex A1 A.1.3.6 (Inverter connected). | Yes or NA | | It has been verified that in the event of the solid state switching device failing to disconnect the Micro-generator , the voltage on the output side of the switching device is reduced to a value below 50 V within 0.5 s. | NA | | 17. Cyber security | Yes or NA | | Confirm that the Manufacturer or Installer of the Micro-generator has provided a statement describing how the Micro-generator has been designed to comply with cyber security requirements, as detailed in 9.7. | Yes | | Additional comments | | | | | | | | | | |